Deep Unsupervised Image Hashing by Maximizing Bit Entropy
نویسندگان
چکیده
Unsupervised hashing is important for indexing huge image or video collections without having expensive annotations available. Hashing aims to learn short binary codes compact storage and efficient semantic retrieval. We propose an unsupervised deep layer called Bi-Half Net that maximizes entropy of the codes. Entropy maximal when both possible values bit are uniformly (half-half) distributed. To maximize entropy, we do not add a term loss function as this difficult optimize tune. Instead, design new parameter-free network explicitly force continuous features approximate optimal half-half distribution. This shown minimize penalized Wasserstein distance between learned Experimental results on datasets FLICKR25K, NUS-WIDE, CIFAR-10, MS COCO, MNIST UCF-101 HMDB-51 show our approach leads compares favorably current state-of-the-art.
منابع مشابه
Unsupervised Semantic Deep Hashing
In recent years, deep hashing methods have been proved to be efficient since it employs convolutional neural network to learn features and hashing codes simultaneously. However, these methods are mostly supervised. In real-world application, it is a time-consuming and overloaded task for annotating a large number of images. In this paper, we propose a novel unsupervised deep hashing method for ...
متن کاملUnsupervised Deep Video Hashing with Balanced Rotation
Recently, hashing video contents for fast retrieval has received increasing attention due to the enormous growth of online videos. As the extension of image hashing techniques, traditional video hashing methods mainly focus on seeking the appropriate video features but pay little attention to how the video-specific features can be leveraged to achieve optimal binarization. In this paper, an end...
متن کاملUnsupervised Deep Video Hashing with Balanced Rotation
Recently, hashing video contents for fast retrieval has received increasing attention due to the enormous growth of online videos. As the extension of image hashing techniques, traditional video hashing methods mainly focus on seeking the appropriate video features but pay little attention to how the video-specific features can be leveraged to achieve optimal binarization. In this paper, an end...
متن کاملHashing by Deep Learning
During the past decade (since around 2006), Deep Learning [7], also known as Deep Neural Networks, has drawn increasing attention and research efforts in a variety of artificial intelligence areas including speech recognition, computer vision, machine learning, text mining, etc. Since one main purpose of deep learning is to learn robust and powerful feature representations for complex data, it ...
متن کاملQuery-adaptive Image Retrieval by Deep Weighted Hashing
The hashing methods have attracted much attention for large scale image retrieval. Some deep hashing methods have achieved promising results by taking advantage of the better representation power of deep networks recently. However, existing deep hashing methods treat all hash bits equally. On one hand, a large number of images share the same distance to a query image because of the discrete Ham...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence
سال: 2021
ISSN: ['2159-5399', '2374-3468']
DOI: https://doi.org/10.1609/aaai.v35i3.16296